Biodistribution and pharmacokinetic studies of SPION using particle electron paramagnetic resonance, MRI and ICP-MS.

نویسندگان

  • Oliviero L Gobbo
  • Friedrich Wetterling
  • Peter Vaes
  • Stephanie Teughels
  • Farouk Markos
  • Deirdre Edge
  • Christine M Shortt
  • Kieran Crosbie-Staunton
  • Marek W Radomski
  • Yuri Volkov
  • Adriele Prina-Mello
چکیده

AIM Superparamagnetic iron oxide nanoparticles (SPIONs) may play an important role in nanomedicine by serving as drug carriers and imaging agents. In this study, we present the biodistribution and pharmacokinetic properties of SPIONs using a new detection method, particle electron paramagnetic resonance (pEPR). MATERIALS & METHODS The pEPR technique is based on a low-field and low-frequency electron paramagnetic resonance. pEPR was compared with inductively coupled plasma mass spectrometry and MRI, in in vitro and in vivo. RESULTS The pEPR, inductively coupled plasma mass spectrometry and MRI results showed a good correlation between the techniques. CONCLUSION The results indicate that pEPR can be used to detect SPIONs in both preclinical and clinical studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biodistribution of newly synthesized PHEA-based polymer-coated SPION in Sprague Dawley rats as magnetic resonance contrast agent [Corrigendum]

OBJECTIVES The purpose of this study was to observe the pharmacokinetic behavior of newly synthesized biocompatible polymers based on polyhydroxyethylaspartamide (PHEA) to be used to coat an iron oxide core to make superparamagnetic iron oxide nanoparticles (SPION). MATERIALS AND METHODS The isotopes [(14)C] and [(59)Fe] were used to label the polymer backbone (CLS) and iron oxide core (FLS),...

متن کامل

Development of 153Sm-DTPA-SPION as a theranostic dual contrast agents in SPECT/MRI

Objective(s): This study describes the preparation, biodistribution of 153Sm-DTPA-SPION after intravenous injection in rats. Materials and Methods: The chelator DTPA dianhydride was conjugated to SPION using a small modification of the well-known cyclic anhydride method. Conjugation was done at a 1: 4 (SPION: ccDTPA) molar ratio. Conjugation reaction was purified with magnetic assorting column...

متن کامل

Multimodality imaging using SPECT/CT and MRI and ligand functionalized 99mTc-labeled magnetic microbubbles

BACKGROUND In the present study, we used multimodal imaging to investigate biodistribution in rats after intravenous administration of a new 99mTc-labeled delivery system consisting of polymer-shelled microbubbles (MBs) functionalized with diethylenetriaminepentaacetic acid (DTPA), thiolated poly(methacrylic acid) (PMAA), chitosan, 1,4,7-triacyclononane-1,4,7-triacetic acid (NOTA), NOTA-super p...

متن کامل

In vitro Labeling of Neural Stem Cells with Poly-L-Lysine Coated Super Paramagnetic Nanoparticles for Green Fluorescent Protein Transfection

Background: The magnetic nanoparticle-based transfection method is a relatively new technique for delivery of functional genes to target tissues. We aimed to evaluate the transfection efficiency of rat neural stem cell (NSC) using poly-L-lysine hydrobromide (PLL)-coated super paramagnetic iron oxide nanoparticles (SPION). Methods: The SPION was prepared and coated with PLL as transfection agent...

متن کامل

Pharmacokinetics and bio-distribution of novel super paramagnetic iron oxide nanoparticles (SPIONs) in the anaesthetized pig.

Manufactured nanomaterials have a variety of medical applications, including diagnosis and targeted treatment of cancer. A series of experiments were conducted to determine the pharmacokinetic, biodistribution and biocompatibility of two novel magnetic nanoparticles (MNPs) in the anaesthetized pig. Dimercaptosuccinic acid (DMSA) coated superparamagnetic iron oxide nanoparticles (MF66-labelled 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanomedicine

دوره 10 11  شماره 

صفحات  -

تاریخ انتشار 2015